Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 1): 130594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437931

RESUMO

This study investigated the homogeneous synthesis of cellulose acetate (CA) and propionate (CP) with varying degrees of substitution (DS) from sisal cellulose in a N, N-dimethylacetamide/lithium chloride (DMAc/LiCl) solvent system. These esters were used to prepare neat (CADSF/CPDSF) and nanocomposite films (CADSFFe/CPDSFFe) from prior synthesized magnetite nanoparticles (NPs, Fe3O4, 5.1 ± 0.5 nm). Among the CA and CP series, the composite CA0.7FFe and the neat CP0.7F films exhibited the highest modulus of elasticity, 2105 MPa and 2768 MPa, respectively, probably a consequence of the continuous fibrous structures present on the surface of these films. Microsphere formation on the film's surface was observed in scanning electron microscopy micrographs. This points to applications in the controlled release of targeted substances. The VSM analysis showed that the cellulosic matrices preserved the superparamagnetic characteristics of the NPs. This study suggested a reduced coupling effect between nanoparticles inside polymeric films due to magnetic saturation at low fields. CA0.7FFe and CA1.3FFe composite films reached a saturation magnetization (MSAT) of 46 emu/g around 7 kOe field. Hosting magnetite nanoparticles in cellulose ester matrices may be an interesting way to develop new functional cellulose-based materials, which have the potential for diverse applications, including microelectromechanical systems and microsensors.


Assuntos
Nanopartículas de Magnetita , Nanocompostos , Ésteres/química , Celulose/química , Microscopia Eletrônica de Varredura , Nanocompostos/química
2.
Materials (Basel) ; 15(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591525

RESUMO

Magnetic hyperthermia (MHT) is a therapy that uses the heat generated by a magnetic material for cancer treatment. Magnetite nanoparticles are the most used materials in MHT. However, magnetite has a high Curie temperature (Tc~580 °C), and its use may generate local superheating. To overcome this problem, strontium-doped lanthanum manganite could replace magnetite because it shows a Tc near the ideal range (42-45 °C). In this study, we developed a smart composite formed by an F18 bioactive glass matrix with different amounts of Lanthanum-Strontium Manganite (LSM) powder (5, 10, 20, and 30 wt.% LSM). The effect of LSM addition was analyzed in terms of sinterability, magnetic properties, heating ability under a magnetic field, and in vitro bioactivity. The saturation magnetization (Ms) and remanent magnetization (Mr) increased by the LSM content, the confinement of LSM particles within the bioactive glass matrix also caused an increase in Tc. Calorimetry evaluation revealed a temperature increase from 5 °C (composition LSM5) to 15 °C (LSM30). The specific absorption rates were also calculated. Bioactivity measurements demonstrated HCA formation on the surface of all the composites in up to 15 days. The best material reached 40 °C, demonstrating the proof of concept sought in this research. Therefore, these composites have great potential for bone cancer therapy and should be further explored.

3.
ACS Omega ; 6(42): 28049-28062, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34723005

RESUMO

This paper demonstrates that femtosecond laser-irradiated Fe2O3 materials containing a mixture of α-Fe2O3 and ε-Fe2O3 phases showed significant improvement in their photoelectrochemical performance and magnetic and optical properties. The absence of Raman-active vibrational modes in the irradiated samples and the changes in charge carrier emission observed in the photocurrent density results indicate an increase in the density of defects and distortions in the crystalline lattice when compared to the nonirradiated ones. The magnetization measurements at room temperature for the nonirradiated samples revealed a weak ferromagnetic behavior, whereas the irradiated samples exhibited a strong one. The optical properties showed a reduction in the band gap energy and a higher conductivity for the irradiated materials, causing a higher current density. Due to the high performance observed, it can be applied in dye-sensitized solar cells and water splitting processes. Quantum mechanical calculations based on density functional theory are in accordance with the experimental results, contributing to the elucidation of the changes caused by femtosecond laser irradiation at the molecular level, evaluating structural, energetic, and vibrational frequency parameters. The surface simulations enable the construction of a diagram that elucidates the changes in nanoparticle morphologies.

4.
Dalton Trans ; 47(16): 5771-5779, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29637950

RESUMO

CdFe2O4 nanoparticles of around 3.9 nm were synthesized using the coprecipitation method and protected by a silica layer. The nanoparticles were mixed with a coacervate and transformed into phosphate glasses with 1, 4 and 8% in mass of nanoparticles by the melt-quenching method. TEM images confirm that the nanoparticles were successfully incorporated into the matrix without inducing crystallization. 31P NMR and Raman spectral analyses show that new P-O-Si bonds are formed in the glasses containing nanoparticles. The glass transition increases as a function of the nanoparticle content due to an increase in the connectivity of the phosphate glass chains. The UV-Vis spectra show bands at 415 and 520 nm assigned to Fe3+ ions and at 1025 nm, characteristic of Fe2+ ions, indicating that some of the nanoparticles dissolve during the melting process. The sample with 8% CdFe2O4 presents a paramagnetic behavior. The glasses obtained are transparent, non-hygroscopic and possess enormous thermal stability which is important for the production of optical devices.

5.
J Colloid Interface Sci ; 469: 296-309, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26897566

RESUMO

We successfully immobilized metalloporphyrins (MeP) in mesoporous silica coating magnetite spheres. In this sense, we prepared two different classes of core@shell supports, which comprise aligned (Fe3O4-AM-MeP, MeP=FeP or MnP) and non-aligned (Fe3O4-NM-MeP, MeP=FeP or MnP) mesoporous magnetic structures. X-ray diffractometry and energy dispersive X-ray spectroscopy confirmed the mesoporous nature of the silica shell of the materials. Magnetization measurements, scanning and transmission electron microscopies (SEM/TEM), electrophoretic mobility (ζ-potential), and infrared spectroscopy (FTIR) also confirm the composition and structure of the materials. The catalysts maintained their catalytic activity during nine reaction cycles toward hydrocarbon oxidation processes without detectable catalyst leaching. The catalysis results revealed a biomimetic pattern of cytochrome P450-type enzymes, thus confirming that the prepared materials are can effectively mimic the activity of such groups.


Assuntos
Materiais Biomiméticos/química , Óxido Ferroso-Férrico/química , Hidrocarbonetos/química , Metaloporfirinas/química , Microesferas , Dióxido de Silício/química , Catálise , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Porosidade , Propriedades de Superfície
6.
J Colloid Interface Sci ; 311(2): 461-8, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17433349

RESUMO

The synthesis of nickel nanoparticles using poly(N-vinilpyrrolidone) (PVP) as protective agent was studied. The nanoparticles were prepared in air according to a modified polyol route, using nickel chloride as precursor and sodium borohydride as reducing agent. Samples with different nickel/PVP ratio were obtained. The X-ray diffraction and transmission electron microscopy (TEM) measurements indicate the occurrence of face-centered cubic metallic nickel nanoparticles with a medium diameter of 3.8 nm and good size dispersion. Fourier transformed infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) data show an effective interaction between the nickel nanoparticles surface and the carboxyl oxygen atoms of PVP. Magnetic measurements show single-domain nonideal superparamagnetism behavior due to dipolar magnetic coupling between particles.

7.
J Colloid Interface Sci ; 289(1): 63-70, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16009218

RESUMO

The structural and magnetic properties of powdered composites consisting of nanosized Fe and Co particles embedded in alumina grains have been investigated. The composites were synthesized by a novel and simple method using co-precipitation from a hybrid gel solution containing layered double hydroxide and aluminium hydroxide. After a vacuum annealing procedure, the Fe composites have a negligible number of Fe(+3) ions and a high concentration of crystalline alpha-Fe nanoparticles having truncated polyhedron shapes with an average diameter of 20 nm that are physically well separated from each other. Magnetization measurements as a function of temperature revealed a superparamagnetic-like behavior characteristic of an assembly of fine particles. A spurious ferromagnetism related to surface interaction between magnetic particles from different powder grains and the formation mechanism of the composites are also discussed.


Assuntos
Óxido de Alumínio/química , Cobalto/química , Ferro/química , Magnetismo , Nanopartículas/química , Óxido de Alumínio/síntese química , Cristalização , Tamanho da Partícula , Pós/química , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA